Thermally-Enhanced High Power RF LDMOS FETs
 120 W, 920 - 960 MHz

Description

The PTFA091203EL is a 120-watt, internally-matched FET intended for use in power amplifier applications in the 920 to 960 MHz band. This device features internal I/O matching and thermally-enhanced open cavity ceramic package. Manufactured with Infineon's advanced LDMOS process, this device provides excellent thermal performance and superior reliability..

PTFA091203EL Package H-33288-6

Features

- Broadband internal matching
- Typical two-carrier WCDMA performance, $960 \mathrm{MHz}, 30 \mathrm{~V}$
- Average output power = 28 W
- Gain $=17 \mathrm{~dB}$
- Efficiency = 27\%
- Intermodulation Distortion $=-36 \mathrm{dBc}$
- Typical CW performance, $960 \mathrm{MHz}, 30 \mathrm{~V}$
- Output power at $\mathrm{P}_{1 \mathrm{~dB}}=140 \mathrm{~W}$
- Gain = 17 dB
- Efficiency = 54\%
- Integrated ESD protection: Human Body Model, Class 2 (minimum)
- Excellent thermal stability, low HCl drift
- Capable of handling 10:1 VSWR @ 30 V, 120 W (CW) output power
- Pb-free and RoHS-compliant

RF Characteristics

Two-carrier WCDMA Measurements (not subject to production test-verified by design/characterization in Infineon test fixture)
$\mathrm{V}_{\mathrm{DD}}=30 \mathrm{~V}, \mathrm{I}_{\mathrm{DQ}}=1050 \mathrm{~mA}, \mathrm{P}_{\mathrm{OUT}}=28 \mathrm{~W}$ Avg
$f_{1}=950 \mathrm{MHz}, f_{2}=960 \mathrm{MHz}$, 3GPP signal, channel bandwidth $=3.84 \mathrm{MHz}$, peak/average $=8.0 \mathrm{~dB} @ 0.01 \%$ CCDF

Characteristic	Symbol	Min	Typ	Max	Unit
Gain	Gps	-	17	-	dB
Drain Efficiency	$\eta \mathrm{D}$	-	27	-	$\%$
Intermodulation Distortion	IMD	-	-36	-	dBc

All published data at $T_{\text {CASE }}=25^{\circ} \mathrm{C}$ unless otherwise indicated
ESD: Electrostatic discharge sensitive device-observe handling precautions!

PTFA091203EL

RF Characteristics (cont.)

Two-tone Measurements (tested in Infineon test fixture)
$\mathrm{V}_{\mathrm{DD}}=30 \mathrm{~V}, \mathrm{I}_{\mathrm{DQ}}=1050 \mathrm{~mA}, \mathrm{P}_{\text {OUT }}=110 \mathrm{~W}$ PEP, $f=960 \mathrm{MHz}$, tone spacing $=1 \mathrm{MHz}$

Characteristic	Symbol	Min	Typ	Max	Unit
Gain	G_{ps}	17	18	-	dB
Drain Efficiency	$\eta \mathrm{D}$	38	40	-	$\%$
Intermodulation Distortion	IMD	-	-30	-28	dBc

DC Characteristics

Characteristic	Conditions	Symbol	Min	Typ	Max	Unit
Drain-Source Breakdown Voltage	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{DS}}=10 \mathrm{~mA}$	$\mathrm{~V}_{(\mathrm{BR}) \mathrm{DSS}}$	65	-	-	V
Drain Leakage Current	$\mathrm{V}_{\mathrm{DS}}=28 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$	$\mathrm{I}_{\mathrm{DSS}}$	-	-	1.0	$\mu \mathrm{~A}$
Drain Leakage Current	$\mathrm{V}_{\mathrm{DS}}=63 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$	$\mathrm{I}_{\mathrm{DSS}}$	-	-	10.0	$\mu \mathrm{~A}$
On-State Resistance	$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0.1 \mathrm{~V}$	$\mathrm{R}_{\mathrm{DS}(\mathrm{on})}$	-	0.07	-	Ω
Operating Gate Voltage	$\mathrm{V}_{\mathrm{DS}}=30 \mathrm{~V}, \mathrm{I}_{\mathrm{DQ}}=1050 \mathrm{~mA}$	$\mathrm{~V}_{\mathrm{GS}}$	2.0	2.5	3.0	V
Gate Leakage Current	$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$	$\mathrm{I}_{\mathrm{GSS}}$	-	-	1.0	$\mu \mathrm{~A}$

Maximum Ratings

Parameter	Symbol	Value	Unit
Drain-Source Voltage	$\mathrm{V}_{\mathrm{DSS}}$	65	V
Gate-Source Voltage	V_{GS}	-0.5 to +12	V
Junction Temperature	T_{J}	200	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {STG }}$	-40 to +150	${ }^{\circ} \mathrm{C}$
Thermal Resistance $\left(\mathrm{T}_{\mathrm{CASE}}=70^{\circ} \mathrm{C}, 120 \mathrm{~W} \mathrm{CW}\right)$	$\mathrm{R}_{\theta \mathrm{JC}}$	0.42	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Ordering Information

Type and Version	Package Type	Package Description	Shipping
PTFA091203EL V4	H-33288-6	Thermally-enhanced slotted flange, single-ended	Tray
PTFA091203EL V4 R250	H-33288-6	Thermally-enhanced slotted flange, single-ended	Tape \& Reel, 250 pcs

Typical Performance (data taken in a production test fixture)

Broadband Circuit Impedance

Frequency	Z Source Ω		Z Load Ω	
$\mathbf{M H z}$	\mathbf{R}	$\mathbf{j X}$	\mathbf{R}	$\mathbf{j X}$
910	1.42	-2.36	2.43	-3.11
920	1.40	-2.21	2.41	-2.97
930	1.38	-2.07	2.39	-2.83
940	1.35	-1.92	2.37	-2.68
950	1.33	-1.78	2.36	-2.54
960	1.32	-1.64	2.34	-2.40
970	1.30	-1.50	2.33	-2.26

Reference Circuit

Reference circuit input schematic for $f=960 \mathrm{MHz}$

Reference circuit output schematic for $f=960 \mathrm{MHz}$

PTFA091203EL

Reference Circuit (cont.)

Description

DUT	PTFA091203EL
PCB	$0.760 \mathrm{~mm}[.030 "]$ thick, $\varepsilon \mathrm{cr}=3.48$, Rogers 4350, 1 oz. copper

Electrical Characteristics at 960 MHz

Transmission Line	Electrical Characteristics	Dimensions: mm	Dimensions: mils
Input			
$\begin{aligned} & \text { TL101, TL102, TL122, } \\ & \text { TL123, TL124 } \end{aligned}$		$\mathrm{W}=0.762$	$\mathrm{W}=30$
TL103	$0.059 \lambda, 8.94 \Omega$	W = 15.240, L = 10.287	W = 600, L = 405
TL104, TL106	$0.040 \lambda, 51.58 \Omega$	$\mathrm{W}=1.651, \mathrm{~L}=7.620$	$\mathrm{W}=65, \mathrm{~L}=300$
TL105	$0.086 \lambda, 38.82 \Omega$	$\mathrm{W}=2.540, \mathrm{~L}=15.900$	W = 100, L = 626
TL107	$0.007 \lambda, 78.27 \Omega$	$\mathrm{W}=0.762, \mathrm{~L}=1.270$	W $=30, \mathrm{~L}=50$
TL108	$0.002 \lambda, 38.82 \Omega$	$\mathrm{W}=2.540, \mathrm{~L}=0.330$	$\mathrm{W}=100, \mathrm{~L}=13$
TL109	$0.015 \lambda, 78.27 \Omega$	$\mathrm{W}=0.762, \mathrm{~L}=2.921$	$\mathrm{W}=30, \mathrm{~L}=115$
TL110	$0.098 \lambda, 78.27 \Omega$	$\mathrm{W}=0.762, \mathrm{~L}=19.050$	$\mathrm{W}=30, \mathrm{~L}=750$
TL111	$0.004 \lambda, 51.58 \Omega$	$\mathrm{W}=1.651, \mathrm{~L}=0.762$	W = 65, L=30
TL112	$0.026 \lambda, 78.27 \Omega$	$\mathrm{W}=0.762, \mathrm{~L}=5.080$	$\mathrm{W}=30, \mathrm{~L}=200$
TL113	$0.014 \lambda, 36.29 \Omega$	$\mathrm{W}=2.794, \mathrm{~L}=2.642$	W = 110, L = 104
TL114	$0.039 \lambda, 8.94 \Omega$	$\mathrm{W}=15.240, \mathrm{~L}=6.731$	W = 600, L = 265
TL115	$0.033 \lambda, 51.58 \Omega$	$\mathrm{W}=1.651, \mathrm{~L}=6.302$	$\mathrm{W}=65, \mathrm{~L}=248$
TL116	$0.001 \lambda, 36.29 \Omega$	$\mathrm{W}=2.794, \mathrm{~L}=0.254$	$\mathrm{W}=110, \mathrm{~L}=10$
TL117	$0.007 \lambda, 51.58 \Omega$	$\mathrm{W}=1.651, \mathrm{~L}=1.270$	W $=65, L=50$
$\begin{aligned} & \text { TL118, TL119, TL120, } \\ & \text { TL121 } \end{aligned}$		$\mathrm{W}=1.651$	$\mathrm{W}=65$
$\begin{aligned} & \text { TL125, TL126, TL127, } \\ & \text { TL128 } \end{aligned}$	$0.011 \lambda, 36.29 \Omega$	$\mathrm{W} 1=2.794, \mathrm{~W} 2=2.794, \mathrm{~W} 3=2.032$	$\mathrm{W} 1=110, \mathrm{~W} 2=110, \mathrm{~W} 3=80$
TL129, TL131	$0.012 \lambda, 36.29 \Omega$	$\mathrm{W} 1=2.794, \mathrm{~W} 2=2.794, \mathrm{~W} 3=2.286$	$\mathrm{W} 1=110, \mathrm{~W} 2=110, \mathrm{~W} 3=90$
TL130	$0.015 \lambda, 8.94 \Omega$	$\mathrm{W} 1=15.240, \mathrm{~W} 2=15.240, \mathrm{~W} 3=2.540$	$\mathrm{W} 1=600, \mathrm{~W} 2=600, \mathrm{~W} 3=100$
TL132	$0.004 \lambda, 8.94 \Omega$	$\mathrm{W} 1=15.240, \mathrm{~W} 2=15.240, \mathrm{~W} 3=0.762$	$\mathrm{W} 1=600, \mathrm{~W} 2=600, \mathrm{~W} 3=30$
TL133	$0.000 \lambda, 38.82 \Omega$	$\mathrm{W} 1=2.540, \mathrm{~W} 2=2.540, \mathrm{~W} 3=0.025$	$\mathrm{W} 1=100, \mathrm{~W} 2=100, \mathrm{~W} 3=1$
TL134		$\mathrm{W} 1=17.780, \mathrm{~W} 2=12.700$	$\mathrm{W} 1=700, \mathrm{~W} 2=500$
TL135		$\mathrm{W} 1=2.540, \mathrm{~W} 2=15.240$	$\mathrm{W} 1=100, \mathrm{~W} 2=600$
TL136	$0.003 \lambda, 78.27 \Omega$	$\mathrm{W}=0.762, \mathrm{~L}=0.508$	W = 30, L = 20

PTFA091203EL

Reference Circuit (cont.)

Electrical Characteristics at 960 MHz

Transmission Line	Electrical Characteristics	Dimensions: mm	Dimensions: mils
Output			
TL201, TL221	$0.058 \lambda, 51.58 \Omega$	$\mathrm{W}=1.651, \mathrm{~L}=10.922$	$\mathrm{W}=65, \mathrm{~L}=430$
TL202	$0.014 \lambda, 51.58 \Omega$	$\mathrm{W}=1.651, \mathrm{~L}=2.720$	$\mathrm{W}=65, \mathrm{~L}=107$
TL203, TL204	$0.000 \lambda, 146.88 \Omega$	$\mathrm{W}=0.025, \mathrm{~L}=0.025$	$\mathrm{W}=1, \mathrm{~L}=1$
TL205	$0.014 \lambda, 38.82 \Omega$	$\mathrm{W}=2.540, \mathrm{~L}=2.540$	$W=100, L=100$
TL206	$0.013 \lambda, 51.58 \Omega$	$\mathrm{W}=1.651, \mathrm{~L}=2.540$	$\mathrm{W}=65, \mathrm{~L}=100$
TL207	$0.128 \lambda, 10.17 \Omega$	W = 13.208, L= 22.352	$\mathrm{W}=520, \mathrm{~L}=880$
TL208, TL226	$0.014 \lambda, 23.03 \Omega$	W = 5.080, L = 2.540	W = 200, L = 100
TL209		$\begin{aligned} & \mathrm{W} 1=5.080, \mathrm{~W} 2=0.025, \mathrm{~W} 3=5.080 \\ & \mathrm{~W} 4=0.025 \end{aligned}$	$\begin{aligned} & \mathrm{W} 1=200, \mathrm{~W} 2=1, \mathrm{~W} 3=200, \\ & \mathrm{~W} 4=1 \end{aligned}$
TL210, TL211, TL212, TL213		$\mathrm{W}=1.651$	$\mathrm{W}=65$
TL214, TL225	$0.090 \lambda, 28.85 \Omega$	$\mathrm{W}=3.810, \mathrm{~L}=16.398$	$\mathrm{W}=150, \mathrm{~L}=646$
TL215, TL223	$0.021 \lambda, 28.85 \Omega$	$\mathrm{W} 1=3.810, \mathrm{~W} 2=3.810, \mathrm{~W} 3=3.810$	$\mathrm{W} 1=150, \mathrm{~W} 2=150, \mathrm{~W} 3=150$
TL216, TL222	$0.004 \lambda, 28.85 \Omega$	$\mathrm{W} 1=3.810, \mathrm{~W} 2=3.810, \mathrm{~W} 3=0.762$	$\mathrm{W} 1=150, \mathrm{~W} 2=150, \mathrm{~W} 3=30$
TL217, TL224	$0.021 \lambda, 23.03 \Omega$	$\mathrm{W} 1=5.080, \mathrm{~W} 2=5.080, \mathrm{~W} 3=3.810$	W 1 = 200, W2 = 200, W3 = 150
TL218 (taper)	0.015 $\lambda, 23.03 \Omega / 38.82 \Omega$	$\mathrm{W} 1=5.080, \mathrm{~W} 2=2.540, \mathrm{~L}=2.794$	$\mathrm{W} 1=200, \mathrm{~W} 2=100, \mathrm{~L}=110$
TL219 (taper)	$0.064 \lambda, 10.17 \Omega / 23.03 \Omega$	$\mathrm{W} 1=13.208, \mathrm{~W} 2=5.080, \mathrm{~L}=11.176$	$\mathrm{W} 1=520, \mathrm{~W} 2=200, \mathrm{~L}=440$
TL220	$0.004 \lambda, 51.58 \Omega$	$\mathrm{W}=1.651, \mathrm{~L}=0.762$	W = 65, L= 30
TL227, TL228		$\begin{aligned} & \mathrm{W} 1=3.810, \mathrm{~W} 2=2.540, \mathrm{~W} 3=3.810 \\ & \mathrm{~W} 4=2.540 \end{aligned}$	$\begin{aligned} & \mathrm{W} 1=150, W 2=100, W 3=150, \\ & W 4=100 \end{aligned}$

See further reference circuit information on next page

Reference Circuit (cont.)

Circuit Assembly Information

Test Fixture Part No. LTN/PTFA091203EF
Find Gerber files for this test fixture on the Infineon Web site at http://www.infineon.com/ffpower

Reference circuit assembly diagram (not to scale)

PTFA091203EL

Reference Circuit (cont.)

Component	Description	Suggested Manufacturer	P/N
Input			
C101	Chip capacitor, 4.7 pF	ATC	ATC100B4R7BW500XB
C102	Chip capacitor, 10000 pF	ATC	ATC200B103MW
C103, C108	Chip capacitor, 33 pF	ATC	ATC100B330FW500XB
C104	Chip capacitor, $0.01 \mu \mathrm{~F}$	ATC	ATC200B103MW
C105	Chip capacitor, $4.71 \mu \mathrm{~F}$	Digi-Key	493-2372-2-ND
C106	Chip capacitor, 5.1 pF	ATC	ATC100B5R1BW500XB
C107	Chip capacitor, 6.2 pF	ATC	ATC100B6R2BW500XB
C801, C802	Chip capacitor, $0.1 \mu \mathrm{~F}$	Digi-Key	PCC104BCT-ND
C803, C804, C805	Capacitor, $0.01 \mu \mathrm{~F}$	Digi-Key	PCC1772CT-ND
R101, R103, R802, R804	Resistor, 10Ω	Digi-Key	P10ECT-ND
R102	Resistor, 5100Ω	Digi-Key	P5.1KECT-ND
R801	Resistor, 1300Ω	Digi-Key	P1.3KGCT-ND
R803	Resistor, 1000Ω	Digi-Key	P1.0KECT-ND
R805	Resistor, 1200Ω	Digi-Key	P1.2KGCT-ND
S1	Potentiometer, 2k Ω	Digi-Key	3224W-202ECT-ND
S2	Transistor	Digi-Key	BCP5616TA-ND
S3	Voltage Regulator	Digi-Key	LM78L05ACM-ND
Output			
C201, C208	Chip capacitor, $1 \mu \mathrm{~F}$	Digi-Key	478-3993-2-ND
C202, C203, C206, C207	Capacitor, $10 \mu \mathrm{~F}$	Digi-Key	281M5002106K
C204, C205, C209, C210	Capacitor, $10 \mu \mathrm{~F}$	Digi-Key	587-1818-2-ND
C211, C215	Chip capacitor, 20000 pF	ATC	ATC200B203MW
C212	Chip capacitor, 33 pF	ATC	ATC100B330FW500XB
C213, C214	Chip capacitor, 1.5 pF	ATC	ATC100B1R5BW500XB

Package Outline Specifications

Find the latest and most complete information about products and packaging at the Infineon Internet page http://www.infineon.com/rfpower

Revision History:		2010-11-12
Previous Version:	2010-10-13, Data Sheet	Data Sheet
Page	Subjects (major changes since last revision)	
$1,2,9$	Updated eared flange package type information	

```
We Listen to Your Comments
Any information within this document that you feel is wrong, unclear or missing at all?
Your feedback will help us to continuously improve the quality of this document.
Please send your proposal (including a reference to this document) to:
highpowerRF@infineon.com
To request other information, contact us at:
+1877 465 3667 (1-877-GO-LDMOS) USA
or +14087760600 International
```


Edition 2010-11-12

Published by
Infineon Technologies AG
81726 Munich, Germany
© 2009 Infineon Technologies AG
All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com/rfpower).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.

Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

